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a b s t r a c t

A comprehensive longitudinal data analysis requires screening for unusual observations.
Outliers or measurement errors might lead to considerable efficiency loss or evenmislead-
ing results in longitudinal data inference. Via joint mean–covariance modelings (Pourah-
madi, 2000; Zhang et al., 2015) and q-order entropy theory (Ferrari, 2010), we propose a
maximum Lq-likelihood estimation for longitudinal data, which can yield robust and con-
sistent estimators of the mean regression coefficients. An EM type algorithm is introduced
to achieve both efficient and stable computation. The asymptotic properties of the proposed
estimators are provided. Simulation studies and an application to Turkish anesthesiology
data are used to show the effectiveness of the new approach.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As data collection techniques improve in finance, biomedical sciences, environmental sciences, and linguistics, among
others, an increasing number of high-dimensional data sets are collected and stored. One prominent feature of these data
sets is that they may contain outliers, due to heavy-tailed error distributions and/or inevitable errors in the data collection
process. These unusual observations, if not treated properly, may result in efficiency loss in statistical inference, or even
biased and incorrect conclusions.

When repeated measurements are taken on a subject, the correlation between them is typically a function of time
difference or location distance. When the within-subject correlation changes dynamically according to time or location,
traditional static covariation patterns (e.g., AR, MA, or exchangeable structure) can hardly depict the dynamic dependence
structure flexibly [2,7,16].

To overcome the limitations mentioned above, dynamic covariance modeling can be used to allow the within-subject
correlation to change dynamically according to time or location. Joint mean–covariance modeling approaches such as
MCDF and HSCF are commonly used for dynamic covariance modeling to depict the dynamic within-subject covariations;
see, e.g., [13,25]. They also provide many parsimonious unconstrained parameterizations by interpreting the dependence
structure and innovation variance in a time series context; see, e.g., [3,5].

Usually, the variances and correlations of observations depend on their own real-time characters, which can be depicted
by the corresponding observed times and covariates in regression. A joint mean–covariance model can capture the real-
time variant information of covariation, by modeling the logarithms of prediction error variances as a linear structure of the
covariates and the entries in the correlation structure as a polynomial of the observed time difference. These parsimonious
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parameterizations are more flexible and adaptive for characterizing the dynamic correlation mechanism and yield more
efficient maximum likelihood or GEE estimators of the mean regression coefficients [13,22]. However, these modeling
approaches are all based on the traditional maximum likelihood estimation (MLE) technique, which is well-known not to be
a robust estimation methodology. Thus almost all joint mean–covariance models studied thus far are sensitive to outliers,
contamination, or heavy-tailed distributions.

In this paper, we propose a robust estimation of joint mean–covariance models by combining ideas from maximum
Lq-likelihood estimation [4,15] and joint mean–covariance modeling. The new approach combines the flexibility of existing
joint mean–covariance models and the robustness of Lq-likelihood. It yields comparable performance to the traditional MLE
when there is no outlier but much better estimators when outliers are present, as illustrated by simulation studies and an
application to spinal anesthesiology data.

The remainder of the paper is organized as follows. In Section 2, we propose a maximum Lq-likelihood estimation based
on a joint mean–covariance modeling framework. The asymptotic properties of the estimators are given in Section 3, and
simulation studies are conducted in Section 4. An application to spinal anesthesiology data is described in Section 5. We
conclude the article with a brief discussion in Section 6 and defer the proofs to Appendices A and B.

2. New estimation procedure

For each i ∈ {1, . . . , n}, let yi = (yi1, . . . , yimi )
⊤ be the repeated measurements of the ith subject which are observed at

irregular time points ti = (ti1, . . . , timi )
⊤ where n is the total number subjects andmi is the number of repeatedmeasures for

ith subject. The design matrix of each subject is denoted by xi, with sizemi × p, and could have a column of 1s if an intercept
term is desired. By allowing mi to be subject specific, our framework is valid for unbalanced longitudinal data. Assume that
for each i ∈ {1, . . . , n}, the response vector yi follows a multivariate normal distribution N (µi,Σ i) with

µi = E(yi|xi) = xiβ, (1)

where µ = (µi1, . . . , µimi )
⊤ andΣ i is an mi × mi positive definite covariance matrix.

A commonly seen joint mean–covariance model would set the mean structure as (1), and model the corresponding
covariance matrix as Σ i(γ, λ), where γ and λ are the dependence parameter and the innovation variance parameter,
with dimension q and d, respectively. The distinction among different joint mean–covariance models mainly lies in the
decomposition methods of covariance matrices and the interpretation of the within-subject correlation mechanisms. We
will give more detailed discussion about the joint mean–covariance modeling ofΣ i(γ, λ) in Section 2.2.

Parameterized by the natural parameter vector θ = (β⊤, γ⊤, λ⊤)⊤ ∈ Θ ⊂ Rp+q+d, the density function of the ith subject
can be written as

f (yi; θ) =
1

(2π )mi/2|Σ i(γ, λ)|1/2
exp{−(yi − xiβ)⊤Σ i(γ, λ)−1(yi − xiβ)/2},

and so the log-likelihood of a joint mean–covariance model is

ℓ(θ) =

n∑
i=1

ln f (yi; θ) ∝ −
1
2

n∑
i=1

{ln |Σ i(γ, λ)| + (yi − xiβ)⊤Σ i(γ, λ)−1(yi − xiβ)},

and the MLE of a joint mean–covariance model is defined as

θ̂MLE = argmax
θ∈Θ

ℓ(θ).

However, since the classicMLE assigns equal weights to all data points, MLE-based jointmean–covariancemodel is sensitive
to outliers, contaminations, and heavy-tailed distributions.

To overcome the drawback of MLE, we propose the following Lq-likelihood [4] for a joint mean–covariance model to
provide a robust and flexible estimation methodology in longitudinal data framework. Let

Lq(θ) =

n∑
i=1

Lq{f (yi; θ)} ∝

n∑
i=1

1
|Σ i(γ, λ)|(1−q)/2 exp{−(1 − q)(yi − xiβ)⊤Σ i(γ, λ)−1(yi − xiβ)/2}, (2)

where Lq(u) = (u1−q
− 1)/(1 − q) and q ∈ (0, 1) is a tuning parameter that goes to 1 when n → ∞. For the simplicity of

notation, we omit the dependence of q on n when there is no confusion. Therefore, given a pre-chosen tuning parameter q,
the maximum Lq-likelihood estimator (MLqE) of the model parameters θ is defined as

θ̃ = argmax
θ∈Θ

Lq(θ) (3)

and the score equation based on Lq-likelihood U∗

θ (yi; θ) can be obtained as

U∗

θ (yi; θ) = ∇θ [Lq{f (yi; θ)}] = f (yi; θ)−q
∇θ f (yi; θ) = f (yi; θ)1−qUθ(yi; θ), (4)

where Uθ(yi; θ) is the score equation of the MLE for the ith subject, viz.

Uθ(yi; θ) = ∇θ ln f (yi; θ) = f (yi; θ)−1
∇θ f (yi; θ).
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Specifically, the score equation for the regression coefficients β is

Uβ(yi; θ) = ∇β ln f (yi; θ) = x⊤

i Σ i(γ, λ)−1(yi − xiβ),

and the score equations for γ and λ depend on the specific joint mean–covariance modeling ofΣ i(γ, λ).
The robustness of the proposed maximum Lq-likelihood estimation stems from the following three points:

(i) Based on (4), the Lq-likelihood score equation can be considered as a weighted version of theMLE score equation. Since
the weight wi = f (yi; θ)1−q of the ith subject is proportional to its density, it can reduce the impact of outliers with low
density, which makes the new estimation procedure robust.

(ii) The tuning parameter q governs the sensitivity of the estimator against outliers [15]. The smaller q is, the more robust
the MLqE is to outliers or heavy-tailed distributions. Please see [15] for more details.

(iii) The conventional maximum likelihood method can be considered as a special case of the MLqE if taking q = 1.
Therefore, the conventional likelihood assigns a weight wi = 1 for each observation and thus cannot decrease the
effects of outliers.

Please refer to the comments after Algorithm 1 for more explanations.

2.1. Computation algorithm

Note that there is no explicit solution to (3). Maximizing (3) is equivalent to maximizing ln{
∑n

i=1 f
1−q(yi; θ)}, which

has a similar structure to a log-density of a mixture model with n components and f 1−q(yi; θ) mimicking the ith component
density. Therefore, we can adapt the EM algorithm formixturemodels to simplify the computation of (3). Inspired by [15,21],
we propose the following modified modal EM algorithm (MMEM) to compute the maximum Lq-likelihood estimator.

Algorithm 1. Given an initial value θ(0), start with k = 0.
E-Step: Update Pi(θ(k)), viz.

Pi(θ(k)) =
f (yi; θ(k))(1−q)∑n
i=1 f (yi; θ(k))(1−q)

∝ |Σ i(γ (k), λ(k))|
−(1−q)/2

exp{−(1 − q)(yi − xiβ(k))⊤Σ i(γ (k), λ(k))−1(yi − xiβ(k))/2}.

M-Step: Update θ(k+1), viz.

(γ (k+1), λ(k+1)) = argmax
θ∈Θ

n∑
i=1

{
Pi(θ(k)) ln f (yi; θ)

}
(5)

= argmin
θ∈Θ

n∑
i=1

Pi(θ(k)){ln |Σ i(γ, λ)| + (yi − xiβ(k))⊤Σ i(γ, λ)−1(yi − xiβ(k))},

β̃
(k+1)

=

{
n∑

i=1

Pi(θ(k+1))x⊤

i Σ̃
−1
i (γ (k+1), λ(k+1))xi

}−1 n∑
i=1

Pi(θ(k+1))x⊤

i Σ̃
−1
i (γ (k+1), λ(k+1))yi.

The above algorithm is in fact a variant of the generalized modal EM algorithm proposed by [8] and further extended
by [20]. The proposed MMEM achieves robustness in the regression by the weights Pi calculated in the E-step. Since Pi is
proportional to the density f (yi; θ), theweighted log-likelihood (5) ensures that observations in the tails of those heavy-tailed
distributions or outliers have less impact on the objective function than the majority of the data, thereby guaranteeing the
robustness of the MLqE. Note that in the M-step, there are no explicit solutions to γ (k+1) and λ(k+1), and so some numerical
methods need to be applied. Once Σ̃ i(γ (k+1), λ(k+1)) is updated, the estimator ofβ can be updated by aweighted least squares
with weights proportional to Pi’s.

The following theorem presents the monotonicity of Algorithm 1.

Theorem 1. The objective function (2) is non-decreasing after each iteration of the modified modal EM algorithm, i.e.,
n∑

i=1

f {yi; θ(k+1)
}
1−q

≥

n∑
i=1

f {yi; θ(k)
}
1−q

until a fixed point is reached.

Remark 1. Similar to the usual EM algorithm, the value towhich the algorithm convergesmay depend on the starting values,
and there is no guarantee that the algorithm converges to the global optimum. Thus, initiating the algorithm from different
starting values and then choosing the best local optimal solution is advised.
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2.2. Joint mean–covariance modeling approaches

In order to compute (2), we need to specify a working covariance model for Σ i(γ, λ). Note that the working covariance
model ofΣ i(γ, λ) will not affect the consistency of the estimation of regression parameters, but a better specified covariance
model could improve the efficiency of the regression parameter estimates. One simple and traditional way is to use the
static covariancemodels such as AR,MA, or exchangeable structures. However, when thewithin-subject correlation changes
dynamically according to time or location, traditional static covariation patterns can hardly satisfy the positive-definiteness
of a covariance matrix for high-dimensional data or flexibly depict the dynamic dependence structure.

In the last decade, parsimonious models for characterizing the dependence structure among repeated measurements
have attracted increasing attention to better reveal how thewithin-subject correlations depend on time and other predictors.
Pourahmadi [12] proposed to model dynamically the covariance matrices by using a modified Cholesky decomposition; see,
e.g., [1,6,11,14]. An attractive aspect of such a decomposition is that the entries in the decomposition have autoregressive
and log innovation interpretations [24]. By applying hyperspherical coordinates, Zhang et al. [25] proposed a novel dynamic
variance-correlation, in which the parsimonious covariance models are more flexible and adaptive than those that only
specify the correlation structure, e.g., an AR,MA, or exchangeable structure. Thus, it is expected thatmore efficientmaximum
likelihood or GEE estimators of the mean regression parameters could be obtained by using these estimated dynamical
covariance matrices than using the estimated ones under specified correlation structure [13,22].

The modified Cholesky decomposition factor (MCDF) based covariance model, originated from [12,13], is a commonly
used joint mean–covariance modeling approach, which provides an unconstrained parameterization for the covariance
matrix via modeling the autoregressive parameters and the innovation variances through covariates. Let TiΣ iT⊤

i = Di,
where Ti is a lower unitriangular matrix with main diagonal 1s and the (j, k)th below diagonal entry being −φijk, and φijk is
the autoregressive coefficients in the autoregressive model defined, for all j ∈ {1, . . . ,mi}, by

yij − µij =

j−1∑
k=1

φijk(yik − µik) + ϵij.

Here, Di = diag(σ 2
i1, . . . , σ

2
imi

), where σ 2
ij is the innovation variance σ 2

ij = var(ϵij). Throughout the article, the summation
Σ0

k=1 is defined to be zero. Define

φijk = z⊤

ijkγ, ln(σ 2
ij ) = h⊤

ij λ, (6)

where zijk and hij are b × 1 and d × 1 vectors of covariates, and zijk is commonly assumed to be a polynomial function of
time differences tik − tij with k > j. Refer to [13] for the algorithms to compute the MLEs β̂, γ̂ and λ̂, and then T̂i and D̂i

could be computed accordingly. As a result, the estimator of Σ i could be obtained simply as Σ̂
MCDF
i = T̂−1

i D̂i(T̂−1
i )⊤. It is

noteworthy that traditional static covariation patterns such as AR, MA, or exchangeable structures are just some special
cases of MCDF. For example, the error has the independence correlation structure if the φijks are all zero, and has an AR(1)
correlation structure if φijk is zero for j − k ≥ 2.

Zhang and Leng [24] transformed MCDF modeling into the moving average Cholesky factor modeling (MACF) by
parameterizing covariance structures as Σ i = LiDiL⊤

i . Here Li = (φijk) is a lower unitriangular matrix, where φijk is the
moving average parameter in

yij − µij =

j−1∑
k=1

φijkεik + εij,

where j ∈ {1, . . . ,mi} with εi1 = yi1 − µi1 and εi = (εi1, . . . , εimi )
⊤

∼ N (0,Di). Here Di = diag(σ 2
i1, . . . , σ

2
imi

), where σ 2
ij is

the innovation variance σ 2
ij = var(εij). Similar to MCDF, Zhang and Leng [24] also suggested to model φijk and σ 2

ij as (6). Due
to the similarity in both decomposition methods, we omit MACF henceforth.

Zhang et al. [25] innovated by proposing a new parameterization of the correlation matrix of MACF to a hyperspherical
coordinates factor modeling. Specifically, write Σ i = Γ iRiΓ i, where Γ i = diag(σi1, . . . , σimi ) with σij being the standard
deviation of yij and Ri = (ρijk)

mi
j,k=1 is the correlation matrix of yi. Applying hyperspherical coordinates and trigonometric

functions, the correlation matrix Ri is parameterized as Ri = CiC⊤

i , where Ci is a lower triangular matrix, viz.

Ci =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
ci21 si21 0 · · · 0
ci31 ci32si31 si32si31 · · · 0
...

...
...

. . .
...

cimi1 cimi2simi1 cimi3smi2simi1 · · ·

mi−1∏
l=1

simi l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
mi×mi

,
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with cijk = cos(φijk) and sijk = sin(φijk). Here, φijk is a function of the correlation parameters and could be interpreted as an
angle; for details, see [25]. Furthermore, φijk and σ 2

ij are also modeled as (6). The detailed algorithm for finding the MLE β̂, γ̂
and λ̂, and therefore Σ̂ i could be found in [25]. Hereinafter, we call this hyperspherical coordinates factor modeling and the
estimating procedure as HSCF.

3. Asymptotics

In this section, we investigate the asymptotic properties of the MLqE estimators for joint mean–covariance models. Let
θ = (β⊤, γ⊤, λ⊤)⊤ ∈ Θ ⊂ Rp+q+d and I(θ) = −E∂2ℓ(θ)/∂θ∂θ⊤. To establish formally the theoretical properties of theMLqE,
we impose the following assumptions.

(i) The dimensions of xij, zij, hij, namely p, q and d, are fixed and max(m1, . . . ,mn) is bounded. The parametric space Θ
is a compact subset of Rp+q+d, and the true parameter value θ0 = (β⊤

0 , γ⊤

0 , λ⊤

0 )
⊤ is in the interior ofΘ . Furthermore,

I(θ0)/n converges to a positive definite matrix I(θ0) as n → ∞.
(ii) Eθ0 supθ∈Θ ∥Uβ(yi; θ, qn)∥2 < ∞ for all i ∈ {1, . . . , n}. Furthermore, Eθ0 supθ∈Θ [{

∑n
i=1 f (yi; θ)δ −1}2/n] → 0 as δ → 0

and the distortion parameter qn > 0 is a sequence such that qn → 1 as n → ∞.
(iii) As qn → 1, the second-order partial derivatives

∑n
i=1 ∇

2
βU∗

β(yi; θ, qn)/n are dominated by an integrable function
in a neighborhood of β0. The smallest eigenvalue of

∑n
i=1 Eθ0U

∗
β(yi; θ, qn)U∗

β(yi; θ, qn)⊤/n is bounded from zero.
Furthermore, for all k, ℓ ∈ {1, . . . , p},{

1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}2

kℓ

=

{
1
n

n∑
i=1

Eθ0∇
2
βLqn(f (yi; θ))

}2

kℓ

are bounded from above by a constant.

Remark 2. Assumption (i) is conventional for the theoretical analysis of the MLE approach in the longitudinal data analysis
framework; see Chapter 2 in [25]. Assumptions (ii) and (iii) are natural requirements for the maximum Lq-likelihood
estimation within longitudinal data modeling; see Chapters 3–4 in [4].

Theorem 2. Suppose that Assumptions (i)–(ii) are satisfied. Then, as n → ∞, the maximum Lq-likelihood estimator based on a
joint mean–covariance modeling, denoted by β̃, is consistent. That is, β̃

p
−→ β0, and

lim
n→∞

1
n

n∑
i=1

Eθ0∇β ln(f (yi; θ))
⏐⏐⏐
β=β0

= lim
n→∞

1
n

n∑
i=1

Eθ0Uβ(yi; θ)
⏐⏐⏐
β=β0

= 0p. (7)

Theorem 3. Suppose that Assumptions (i)–(iii) are satisfied, and β∗
→ β0 as n → ∞, where β∗ is the vector such that

Eθ0U
∗
β(yi; θ, qn)|β=β∗= 0p. Then the solution of the MLqE equation β̃ is asymptotically normally distributed as
√
nV−1/2

n (β̃ − β∗) ⇝ N (0p, Ip),

where

Vn =

{
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}−1 {
1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
}{

1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}−1 ⏐⏐⏐⏐⏐
β=β∗

Note that the score equation (4) is in general biased for each fixed q < 1 due to the weight function f (yi; θ)1−q. Instead,
the solution of the MLqE equation β̃ is an unbiased estimate for β∗, which converges to the true value β0 when q → 1.
In addition, the above result holds even when the covariance matrix is misspecified. If the covariance matrix is correctly
specified, based on results in Appendices A and B, the asymptotic variance of

√
n β̃ is Vn

p
−→ V, where

V =

{
lim
n→∞

1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

}−1

,

which is the same as the asymptotic variance of MLE.

4. Simulation studies

In this section, we conduct simulation studies to investigate the performance of the MLqE, and compare it with the MLE
in joint mean–covariance modeling. The main objectives are to:
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Table 1
The accuracy of the estimated coefficients in terms of MAB, SD and MSE for 1000 parameter estimates for Example 1. All the results are multiplied by a
factor of 103 .
Sample size n = 100 n = 200 n = 300

Method MAB SD MSE MAB SD MSE MAB SD MSE

Covariance structure: MCDF model

MLE β0 43.75 54.04 2.93 30.01 37.86 1.44 24.83 31.05 0.97
(MCDF) β1 39.68 49.20 2.45 26.03 32.66 1.08 21.97 27.71 0.77

β2 38.59 48.46 2.37 26.41 32.90 1.10 21.45 26.87 0.72

MLqE β0 43.75 54.05 2.93 30.00 37.86 1.44 24.83 31.05 0.97
(MCDF) β1 39.65 49.19 2.45 26.02 32.66 1.08 21.97 27.71 0.77

β2 38.58 48.46 2.37 26.41 32.90 1.10 21.45 26.88 0.72

Covariance structure: HSCF model

MLE β0 1.12 1.45 0.0021 0.85 1.10 0.0012 0.75 0.98 0.0009
(HSCF) β1 0.41 0.55 0.0003 0.31 0.43 0.0002 0.28 0.38 0.0001

β2 0.41 0.54 0.0003 0.32 0.43 0.0002 0.28 0.37 0.0001

MLqE β0 1.42 8.31 0.0690 0.85 1.30 0.0017 0.77 1.56 0.0024
(HSCF) β1 0.56 3.68 0.0136 0.38 1.78 0.0032 0.28 0.45 0.0002

β2 0.50 2.71 0.0073 0.38 1.85 0.0034 0.28 0.48 0.0002

(i) compare the estimation efficiency of the MLqE and the MLE when data sets follow multivariate normal distributions
and the assumptions of joint mean–covariance models;

(ii) evaluate the robustness of the MLqE when data sets are contaminated by outliers;
(iii) demonstrate the model fitting ability of the MLqE and the MLE for joint mean–covariance modeling when data sets

are generated from some heavy-tailed distributions.

Throughout the study, β = (1, −0.5, 0.5) is used as the vector of regression coefficients and the corresponding covariate
is xij = (1, xij1, xij2)⊤, where (xij1, xij2)⊤ is generated from a multivariate normal distribution with mean zero, marginal
variance 1 and bivariate exchange correlation structure with ρ = 0.5. Each subject is measured mi times with mi =

max(1,B(10, 0.8));measurement times ti1, . . . , timi are generated from U(0, 1), whereB(n, p) is a binomial distributionwith
n experiments and a success probability p.

Note that the number of repeated measurements is subject specific and therefore, the measurements are allowed to be
observed at irregular times. Thus the data structure is unbalanced. Quadratic polynomials are applied to time differences as
zijk = (1, (tij − tik), (tij − tik)2)⊤, and γ = (0.3, −0.2, 0.3) and λ = (1, 0.5, 0.25) are used. The covariate for the log innovation
structure is taken to be hij = (1, hij1, hij2)⊤, where (hij1, hij2)⊤ is generated from the same multivariate normal distribution
as (xij1, xij2)⊤. We consider the covariance structure ofΣ i(γ, λ) based on both MCDF and HSCF.

For each generated data, MCDF and HSCF are applied to model the covariance structure, and both the MLE and the MLqE
are used to estimate θ. In our study, we use linear regression estimates as initial values. To assess the accuracy of regression
parameter estimates β̃, sample standard deviation (SD), mean absolute bias (MAB = average(|β̃ − β0|)) and mean square
errors (MSE = average{(β̃ − β0)2}) are reported. Sample sizes n ∈ {100, 200, 300} are used over 1,000 repetitions.

The tuning parameter qn governs the sensitivity of the estimator against outliers/heavy-tailed distributions. The smaller
qn, the less sensitive the MLqE is to outliers/heavy-tailed distributions. So far, there is no good universal way to choose the
tuning parameter qn. Usually, when the unusual observations become a concern (i.e., extreme outliers in the data set or
many observations from the tails of a heavy-tailed distribution), a small q should be used to protect against the outliers. In
our numerical studies, we propose to select the tuning parameter qn empirically by a five-fold cross validation method. The
tuning parameter qn ranges from 0.7 to 1 and we take the one that minimizes the average prediction errors. Our numerical
studies demonstrate the effectiveness of such selection method.

4.1. Models

Example 1 (Multivariate Normal Distribution).We first consider the performance of the MLqE when the errors are multivari-
ate normal. We conduct a simulation study with the model defined, for i ∈ {1, . . . , n} and nj ∈ {1, . . . ,mi}, by

yij = x⊤

ij β + eij, (8)

where ei = (ei1, . . . , eimi )
⊤ has mean (0, . . . , 0)⊤ and MCDF or HSCF is used as the covariance structure. Both the MLE and

the MLqE are employed to estimate the regression parameters, and Table 1 reports the MAB, SD and MSE of both estimates.

Example 2 (Outliers). In this example, we demonstrate the advantage of the maximum Lq-likelihood estimator over the MLE
in data setswith outliers. Outliers could be some extreme values in the population or bad data points caused bymeasurement
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Table 2
The accuracy of the estimated coefficients in terms of MAB, SD and MSE for 1000 parameter estimates for Example 2. All the results are multiplied by a
factor of 103 .
Sample size n = 100 n = 200 n = 300

Method MAB SD MSE MAB SD MSE MAB SD MSE

Covariance structure: MCDF model

MLE β0 526.46 163.73 303.94 595.87 113.91 368.03 617.31 97.46 390.56
(MCDF) β1 66.81 84.76 7.18 48.06 61.13 3.74 39.00 48.51 2.35

β2 65.18 82.15 6.75 49.06 61.81 3.82 40.31 50.62 2.56

MLqE β0 80.52 118.67 14.20 292.12 271.47 139.97 514.40 160.69 285.93
(MCDF) β1 44.97 56.96 3.25 42.32 53.31 2.85 36.77 45.77 2.09

β2 45.68 57.69 3.33 41.63 52.61 2.77 38.22 48.05 2.31

Covariance structure: HSCF model

MLE β0 565.78 235.55 372.05 614.58 157.06 402.34 632.60 119.70 414.50
(HSCF) β1 22.94 29.30 0.86 17.55 22.01 0.48 15.33 19.21 0.37

β2 24.58 31.20 0.97 17.35 22.18 0.49 14.59 18.50 0.34

MLqE β0 1.13 1.54 0.0024 0.86 1.15 0.0013 1.61 21.19 0.4493
(HSCF) β1 0.44 0.58 0.0003 0.31 0.41 0.0002 0.44 4.25 0.0181

β2 0.42 0.56 0.0003 0.31 0.41 0.0002 0.48 5.60 0.0313

Table 3
The accuracy of the estimated coefficients in terms of MAB, SD and MSE for 1000 parameter estimates for Example 3. All the results are multiplied by a
factor of 103 .
Method MAB SD MSE MAB SD MSE MAB SD MSE

Sample size n = 100 n = 200 n = 300

Multivariate Laplace distributionΣ L = Σ (MCDF )

MLE β0 42.57 53.71 2.88 30.27 38.06 1.45 23.72 30.23 0.91
(MCDF) β1 39.31 49.19 2.46 27.30 34.21 1.17 21.77 27.28 0.75

β2 37.73 47.21 2.26 26.79 34.04 1.16 21.78 27.14 0.75

MLqE β0 41.61 52.48 2.75 29.92 37.64 1.42 23.53 30.00 0.90
(MCDF) β1 38.49 48.18 2.36 26.95 33.77 1.14 21.61 27.07 0.74

β2 36.87 46.17 2.16 26.48 33.65 1.13 21.62 26.94 0.74

Multivariate Laplace distributionΣ L = Σ (HSCF )

MLE β0 8.74 16.44 0.2701 5.27 9.96 0.0992 3.61 6.90 0.0476
(HSCF) β1 3.33 5.07 0.0312 1.91 3.14 0.0118 1.33 2.24 0.0059

β2 3.50 5.56 0.0375 1.94 3.41 0.0135 1.26 2.04 0.0048

MLqE β0 0.94 1.29 0.0017 0.70 0.93 0.0009 0.64 0.86 0.0007
(HSCF) β1 0.35 0.47 0.0002 0.27 0.36 0.0001 0.26 0.71 0.0005

β2 0.36 0.48 0.0002 0.28 0.37 0.0001 0.24 0.33 0.0001

errors in the data collection process. A few outliers might cause biased estimates and even misleading inference for the MLE
approach when our interest is to build the model/relationship for the majority of the population.

To be more specific, 97% data are generated from model (8), and the other 3% are generated from the gross error model
defined, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}, by

yij = x⊤

ij β + eij + ξij,

where ξi = (ξi1, . . . , ξimi )
⊤ are sampled from U(20, 25). Table 2 summarizes the simulation results.

Example 3 (Heavy-Tailed Distribution). In this example, we compare the performance of the new estimate with the MLE
when the error has a heavy-tailed distribution. With an appropriate pre-determined distortion parameter q < 1, the MLqE
could give less weight to data points in the tail of the multivariate distribution, and more to data points near the center of
the distribution [15].

For illustration purposes, we consider the multivariate Laplace distribution with MCDF and HSCF covariance structure as
the error distributions. The results are given in Table 3.

4.2. Summary of simulation results

Based on the simulation results listed in Tables 1–3, we can draw the following conclusions:
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Fig. 1. Frequency description of hypotension.

Table 4
Comparison between the classic MLE and the proposed MLqE regression methods based on MCDF and HSCF for the Spinal
anesthesia data set.

Covariate
Method: Bootstrap without replacement
(Ntraining = 300, Ntesting = 75)

MLEMCDF MLqEMCDF MLEHSCF MLqEHSCF

β̂ SD β̂ SD β̂ SD β̂ SD

Intercept 72.13 1.05 71.43 1.16 73.03 2.64 69.78 1.85
Age 0.06 0.02 0.05 0.02 0.05 0.03 0.05 0.03
Gender 3.67 1.13 3.97 1.15 3.78 1.24 3.64 1.57

Time −0.17 0.01 −0.15 0.01 −0.14 0.04 −0.12 0.02
Hypotension −4.40 0.38 −4.07 0.35 −8.86 1.19 −8.98 0.72
Surgical department 2.23 0.71 2.32 0.72 1.73 1.04 2.93 0.89

Marcain-heavy −0.28 0.08 −0.25 0.09 −0.24 0.14 −0.19 0.14
Midazolam −0.73 0.31 −0.87 0.33 −0.65 0.35 −1.39 0.44
Chirocaine −0.08 0.06 −0.09 0.07 −0.08 0.11 −0.07 0.13

MSE 152.61 152.23 151.82 149.57
MSPE 136.21 135.60 135.41 132.46

(i) When data sets are generated from a pure jointmean–covariancemodel without outliers, the proposedMLqE approach
is comparable to the MLE when the sample size is moderate or large, but slightly worse when the sample size is small.

(ii) The MLqE provides more robust estimates than the MLE when outliers are present in the data set.
(iii) The MLqE outperforms the MLE for heavy-tailed error distributions, and the superiority is quite significant for HSCF

covariance structure.

5. Real data analysis

As a common clinic anesthetic technique used in surgery, spinal anesthesia may cause hypotension during operations.
Therefore, investigating the relationship between patients’ diastolic blood pressure (DBP) and particular risk factors (such
as age, gender, anesthesia drug doses, etc.) is valuable for anesthesiology studies [9,17,18]. The data set in our study is from
the Department of Anesthesiology and Reanimation, Akdeniz University Hospital, Antalya, Turkey. The data are from 375
patients (210 males and 165 females) who had spinal anesthesia from January 2008 to January 2011, and were recorded
from three surgical departments (General, O&G and Urology). The response variable is DBP, and the explanatory variables
are age, gender, operation time, surgical department and the dosages of Marcain-heavy, midazolam and chirocaine. There
are no missing observations in either outcome or covariates.

Fig. 1 displays the percentage and the frequency of hypotension occurrence. According to the left picture in Fig. 1, the
percentage of hypotension occurrence in the Department of Obstetrics and Gynecology (O&G) is higher than in the other two
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Fig. 2. Outliers in the anesthesia data set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. MSE and MSPE box plots for different regression methods.

departments. Based on the histogram in the right of Fig. 1, female patients are more likely to experience hypotension than
male patients in the surgery. In addition, a female patient tends to have hypotension in the first half stage of an operation,
but a man often does in the second half stage, which means the gender is a noteworthy factor in anesthesia data analysis.

Next, we compare the performance of the MLE and the MLqE for different joint mean–covariance models, i.e., MCDF and
HSCF. LetMCDF andHSCF share the same covariates for covariancemodeling, i.e.,hij = xij and zijk = (1, (tij−tik), (tij−tik)2)⊤.
First, using the MLE with HSCF model, we obtain the coefficients estimates from the whole data; these are listed in Table 4.
Then, we find the outliers (11 subjects) by the residuals criterion proposed in [10] and plot them in red in Fig. 2. Next, 75
out of the 364 stable subjects are randomly selected as the testing set and the remaining subjects are used as a training
set. The standard deviations, average values of mean square regression errors (MSE) and the mean square prediction errors
(MSPE) based on 400 bootstrap replications are calculated and reported in Table 4. Fig. 3 also displays the MSE andMSPE for
different modeling methods.

The coefficient estimates listed in Table 4 indicate that all three kinds of anesthetics have negative effects and are
significant on blood pressure responses. This implies that excessive use may lead to hypotension during the surgery and
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the dose of anesthetics should be selected cautiously. Our analysis result is consistent with the clinical phenomena observed
in most hospital departments. In addition, both Table 4 and Fig. 3 show that the MSE and the MSPE of the MLqE(HSCF) are
smallest, and therefore, MLqE(HSCF) is the most preferred method for modeling this data set.

6. Discussion

We have proposed a unified robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal
studies. The new method provides comparable performance to the traditional MLE when there is no outlier but provides
much better estimates when there are outliers or the errors are heavy-tailed in the longitudinal data.

We mainly focused on the joint mean–covariance models based on MCDF and HSCF, but the procedure and asymptotic
results can also be extended to other joint mean–covariance models for longitudinal data. In the future, it would be of
interest to combine the ideas of maximum Lq-likelihood estimation and nonparametric covariance modeling [1,21,23]. In
addition, similar to [4,15], all the theoretical results provided in this article only cover cases without outliers. It requires
further research to study the properties of the proposed estimates when there are outliers in the data set.
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Appendix A. Monotonicity of MMEM

The following proof of Theorem1 indicates that the objective function (2) is nondecreasing in each iteration of theMMEM
algorithm.

Proof of Theorem 1. Let Z (k+1)
i be a discrete random variable such that

Pr
{
Z (k+1)
i =

f (yi; θ(k+1))1−q

f (yi; θ(k))1−q

}
=

f (yi; θ(k))1−q∑n
i=1 f (yi; θ(k))1−q

≜ Pi.

Then

ln

{∑n
i=1 f (yi; θ(k+1))1−q∑n
i=1 f (yi; θ(k))1−q

}
= ln

{
n∑

i=1

f (yi; θ(k))1−q∑n
i=1 f (yi; θ(k))1−q

×
f (yi; θ(k+1))1−q

f (yi; θ(k))1−q

}

= ln

{
n∑

i=1

Pi ×
f (yi; θ(k+1))1−q

f (yi; θ(k))1−q

}
= ln{E(Z (k+1)

i )}.

By Jensen’s inequality,

ln{E(Z (k+1)
i )} ≥ E{ln Z (k+1)

i } =

n∑
i=1

f (yi; θ(k))1−q∑n
i=1 f (yi; θ(k))1−q

× ln
{
f (yi; θ(k+1))1−q

f (yi; θ(k))1−q

}
=

n∑
i=1

Pi × ln
{
f (yi; θ(k+1))1−q

f (yi; θ(k))1−q

}
.

By the M-step property (5),
n∑

i=1

Pi × ln f {yi; θ(k+1)
} ≥

n∑
i=1

Pi × ln f {yi; θ(k)
}.

Then we have

ln

{∑n
i=1 f (yi; θ(k+1))1−q∑n
i=1 f (yi; θ(k))1−q

}
≥ E{ln Z (k+1)

i } =

n∑
i=1

Pi × ln
[
f {yi; θ(k+1)

}
1−q

f {yi; θ(k)
}1−q

]
= (1 − q)

n∑
i=1

Pi × ln
[
f {yi; θ(k+1)

}
1−q

f {yi; θ(k)
}

]
≥ 0.

Therefore,
n∑

i=1

f {yi; θ(k+1)
}
1−q

≥

n∑
i=1

f {yi; θ(k)
}
1−q.
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Appendix B. Consistency and asymptotic normality

Based on joint mean–covariance models and Assumptions (i)–(iii), this Appendix gives a sketch of the proof of the
consistency and asymptotic normality results of the mean regression coefficients estimate β̂ by fixing the covariance
parameters. Without loss of generality, the identity function µ(xiβ) = xiβ is used as the link function in this context. The
derivations for other link functions are similar.

Proofs of Theorem 2. Let Y1, . . . ,Yn be n mutually independent random vectors with multivariate normal probability
distributions N [xiβ,Σ i(γ, λ)], respectively. The logarithm of Yi’s density is given by

ln{f (yi; θ)} = −
mi

2
ln (2π ) −

1
2
(ln |Σ i(γ, λ))| −

1
2
(yi − xiβ)⊤Σ i(γ, λ)−1(yi − xiβ).

The deformed ln pdf of Yi is defined as

Lq{f (yi; θ)} = {f (yi; θ)1−q
− 1}/(1 − q),

where

f (yi; θ) = exp
{
−

mi

2
ln (2π ) −

1
2
(ln |Σ i(γ, λ))| −

1
2
(yi − xiβ)⊤Σ i(γ, λ)−1(yi − xiβ)

}
.

Next, we set

Kn(β; γ, λ) =
1
n

n∑
i=1

Eθ0∇β ln{f (yi; θ)} =
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1(yi − xiβ) =
1
n

n∑
i=1

x⊤

i Σ i(γ, λ)−1xi(β0 − β),

and

Sn(β; γ, λ) =
1
n

n∑
i=1

∇βLqn{f (yi; θ)} =
1
n

n∑
i=1

f (yi; θ)1−qn · U(yi; β) =
1
n

n∑
i=1

f (yi; θ)1−qn · x⊤

i Σ i(γ, λ)−1(yi − xiβ).

Let ∥ · ∥1 denote the L1-norm. Then

sup
θ∈Θ

∥Sn(β; γ, λ) − Kn(β; γ, λ)∥1 = sup
θ∈Θ

1n
n∑

i=1

∇βLqn{f (yi; θ)} −
1
n

n∑
i=1

Eθ0∇β ln{f (yi; θ)}


1
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θ∈Θ
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∇βLqn{f (yi; θ)} −
1
n
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i=1

∇β ln{f (yi; θ)}
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1
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θ∈Θ

1n
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∇β ln{f (yi; θ)} −
1
n
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i=1

Eθ0∇β ln{f (yi; θ)}


1

. (9)

By Assumption (ii) and the multivariate Law of Large Numbers, we find

1
n

n∑
i=1

∇β ln{f (yi; θ)} −
1
n

n∑
i=1

Eθ0∇β ln{f (yi; θ)}
p

−→ 0p,

which is equivalent to saying that the second summand in (9) satisfies

sup
θ∈Θ

∥
1
n

n∑
i=1

∇β ln{f (yi; θ)} −
1
n
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p
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By the Cauchy–Schwarz inequality, the first summand in (9) satisfies
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θ∈Θ
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√1
n
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{f (yi; θ)(1−qn) − 1}2 ×

√1
n
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i=1

{x⊤

i Σ i(γ, λ)−1ri}2(j)

⎤⎦ ,



408 L. Xu, S. Xiang and W. Yao / Journal of Multivariate Analysis 171 (2019) 397–411

where ri = yi − xiβ and for j ∈ {1, . . . , p}, {x⊤

i Σ i(γ, λ)−1ri}(j) is the jth element of the vector x⊤

i Σ i(γ, λ)−1ri. Based on
Assumption (ii), Eθ0 supθ∈Θ ∥Uβ(yi; θ, qn)∥2 < ∞ for all i ∈ {1, . . . , n}, and

1
n

n∑
i=1

sup
θ∈Θ

{x⊤

i Σ i(γ, λ)−1ri}2(j) = Op(1).

Next, by Markov’s inequality,

P

[
sup
θ∈Θ

1
n

n∑
i=1

{f (yi; θ)(1−qn) − 1}2 > ϵ

]
≤

1
ϵ

sup
θ∈Θ

1
n

n∑
i=1

Eθ0{f (yi; θ)(1−qn) − 1}2.

By Assumption (ii), Eθ0{f (yi; θ)1−qn − 1}2 → 0 as qn → 1. Then,

sup
θ∈Θ

1n
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i=1

{f (yi; θ)(1−qn) − 1}{x⊤
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
1

p
−→ 0.

With the above derivations, we conclude that

sup
θ∈Θ

1n
n∑

i=1

∇βLqn{f (yi; θ)} −
1
n
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p
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and therefore,

sup
θ∈Θ

∥ Sn(β; γ, λ) − Kn(β; γ, λ) ∥1
p

−→ 0. (10)

Obviously,

Kn(β; γ, λ) =
1
n

n∑
i=1

Eθ0∇β ln{f (yi; θ)}

is equicontinuous in θ = (β⊤, γ⊤, λ⊤)⊤ ∈ Θ ⊂ Rp+q+d. Since the parameter spaceΘ is compact, and by Assumption (i), it
is easy to see that Kn(β; γ, λ) converges to a finite limit, namely (7). Indeed,

K(β; γ, λ) = lim
n→∞

1
n

n∑
i=1

Eθ0∇β ln{f (yi; θ)} = lim
n→∞

1
n

n∑
i=1

Eθ0Uβ(yi; θ).

The foregoing convergence is uniform in θ = (β⊤, γ⊤, λ⊤)⊤ and the limit K(β; γ, λ) is continuous inΘ . Thus by Eq. (10),

1
n

n∑
i=1

∇βLqn{f (yi; θ)}
p

−→ K(β; γ, λ)

uniformly in θ = (β⊤, γ⊤, λ⊤)⊤. Here K(β; γ, λ) is uniformly continuous in θ = (β⊤, γ⊤, λ⊤)⊤ sinceΘ is compact.
Based on Theorem5.9 in [19], the consistency ofmean regression coefficients estimate is justified, i.e., β̃

p
−→ β0. Similarly,

we can establish the consistency of γ̃ and λ. We omit the proof here. □

Proof of Theorem 3. Denote U∗
β(yi; θ, qn) = ∇βLqn{f (yi; θ)} = f (yi; θ)1−qnUβ(yi; θ). Suppose β∗ is a vector such that

Eθ0U
∗
β(yi; θ, qn) = 0p. By Taylor’s expansion, for a solution β̃ of the maximum Lq-likelihood equation, there exists a random
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(11)

Here, I∗β(yi; θ, qn) = ∇βU∗
β(yi; θ, qn) = ∇

2
βLqn{f (yi; θ)} is a p × p matrix of first order derivatives and ∇

2
βU∗

β(yi; θ, qn) is a
p × p × p array of partial second-order derivatives. Then expression (11) can be rewritten as

−
√
n An

{
1
n

n∑
i=1

U∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗

}
= An

{
1
n

n∑
i=1

I∗β(yi; θ, qn)
⏐⏐⏐
β=β∗

}
√
n (β̃ − β∗)

+ An

√
n
2

(β̃ − β∗)⊤
{
1
n

n∑
i=1

∇
2
βU

∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗∗

}
(β̃ − β∗),



L. Xu, S. Xiang and W. Yao / Journal of Multivariate Analysis 171 (2019) 397–411 409

where
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First, wewant to show that−
√
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vector a ∈ Rp such that ∥a∥ > 0. Define Wn,i = a⊤U∗
β(yi; θ, qn)|β=β∗ and W̄n = (Wn,1 + · · · + Wn,n)/n. Since the Wn,is form

a triangular array where theWn,is are row-wise independent, we check the Lyapunov condition, which reads
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as n → ∞. By the Lindeberg–Feller Central Limit Theorem, we have
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Hence, by the Cramér–Wold theorem, we have
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{
1
n

n∑
i=1

I∗β(yi; θ, qn)
⏐⏐⏐
β=β∗

}
p

−→ Ip.

For fixed k, ℓ ∈ {1, . . . , p}, and given ε > 0,

Pr
θ0

⎡⎣⏐⏐⏐⏐⏐⏐
{
1
n

n∑
i=1

I∗β(yi; θ, qn)
⏐⏐⏐
β=β∗

}
k,ℓ

−

{
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗

}
k,ℓ

⏐⏐⏐⏐⏐⏐ > ε

⎤⎦ ≤
1

nε2 Eθ0

[
∂

∂βk∂βℓ

Lqn{ln f (yi; θ)}
]2

.

SinceΘ is compact, the ∂Lqn{ln f (yi; θ)}/(∂βk∂βℓ) is bounded from above by a constant. Hence,

Eθ0

[
∂Lqn{ln f (yi; θ)}/∂βk∂βℓ

]2
/(nε2) → 0

as n → ∞. Since convergence in probability is ensured for each k, ℓ and p < ∞, we conclude that

1
n

n∑
i=1

I∗β(yi; θ, qn) −
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

converges in probability to a p × p zero matrix. Therefore,{
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}−1

×

{
1
n

n∑
i=1

I∗β(yi; θ, qn)

} ⏐⏐⏐⏐⏐
β=β∗

p
−→ Ip.

Finally, we show that{
1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
⏐⏐⏐
β=β∗

}−1/2 √
n
2

(β̃ − β∗)⊤
{
1
n

n∑
i=1

∇
2
βU

∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗∗

}
(β̃ − β∗)

is negligible. The second-order derivatives
∑n

i=1 ∇
2
βU∗

β(yi; β∗∗, qn)/n is a p × p × p array. By Assumption (iv), there is a
neighborhood of β0 such that

∑n
i=1 ∇

2
βU∗

β(yi; β∗∗, qn)/n is dominated by g0(y) for some g0(y) ≥ 0. With probability tending
to 1, 1n

n∑
i=1

∇
2
βU

∗

β(yi; β∗∗, qn)

 ≤ p3
1
n

n∑
i=1

|g0(yi)|.

Therefore, each entry of
∑n

i=1 ∇
2
βU∗

β(yi; β∗∗, qn)/n is bounded in probability. Recall Assumption (v), that{
1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
⏐⏐⏐
β=β∗

}−1/2
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is a bounded matrix. Hence,{
1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
⏐⏐⏐
β=β∗

}−1/2 √
n
2

(β̃ − β∗)⊤
{
1
n

n∑
i=1

∇
2
βU

∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗∗

}
(β̃ − β∗)

is bounded in probability and it is of higher order than the second term.
By combining the above and applying Slutsky’s lemma, we obtain the following asymptotic normality result:

√
nV−1/2

n (β̃ − β0) ⇝ N [0p, Ip],

where

Vn =

{
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}−1 {
1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
}{

1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)

}−1 ⏐⏐⏐⏐⏐
β=β∗

.

So the asymptotic normality result of Theorem 3 is established. Note that the above result holds even when the covariance
matrix is misspecified.

Calling on Assumption (iii), we have

1
n

n∑
i=1

Eθ0U
∗

β(yi; θ, qn)U∗

β(yi; θ, qn)⊤
⏐⏐⏐
β=β∗

=
1
n

n∑
i=1

Eθ0 f (yi; θ)2(1−qn) · Uβ(yi; θ)Uβ(yi; θ)⊤
⏐⏐⏐⏐⏐
β=β∗

=
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi{1 + Op(1)}

and

1
n

n∑
i=1

I∗β(yi; θ, qn)
⏐⏐⏐
β=β∗

=
1
n

n∑
i=1

Eθ0 I
∗

β(yi; θ, qn)
⏐⏐⏐
β=β∗

{1 + op(1)}

=
1
n

n∑
i=1

Eθ0

{
−(1 − qn)f (yi; θ)1−qn · Uβ(yi; θ)Uβ(yi; θ)⊤ + f (yi; θ)(1−qn) · Iβ(yi; θ)

} ⏐⏐⏐⏐⏐
β=β∗

=

{
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

} ⏐⏐⏐⏐⏐
β=β∗

{1 + op(1)}.

So

Vn =

{
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

}−1 {
1
n

n∑
i=1

x⊤

i Σ i(γ, λ)−1xi

}{
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

}−1

{1 + op(1)}

=

{
1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

}−1

{1 + op(1)}
p

→ V,

where

V =

{
lim
n→∞

1
n

n∑
i=1

Eθ0x
⊤

i Σ i(γ, λ)−1xi

}−1

.

References

[1] Z. Chen, C. Leng, Local linear estimation of covariance matrices via Cholesky decomposition, Statist. Sinica 25 (2015) 1249–1263.
[2] P. Diggle, P. Heagerty, K. Liang, S. Zeger, Analysis of Longitudinal Data, Oxford University Press, 2002.
[3] J. Fan, Y. Wu, Semiparametric estimation of covariance matrices for longitudinal data, J. Amer. Statist. Assoc. 105 (2008) 1520–1533.
[4] D. Ferrari, Y. Yang, Maximum Lq-likelihood estimation, Ann. Statist. 38 (2010) 753–783.
[5] C.F. Kou, J.X. Pan, Variable Selection for Joint Mean and Covariance Models Via Penalized Likelihood, Technical Report, School of Mathematics, The

University of Manchester, England, 2010.
[6] C. Leng, W. Zhang, J. Pan, Semiparametric mean-covariance regression analysis for longitudinal data, J. Amer. Statist. Assoc. 105 (2010) 181–193.
[7] D. Leung, Y.-G.Wang,M. Zhu, Efficient parameter estimation in longitudinal data analysis using a hybrid GEEmethod, Biostatistics 10 (2009) 436–445.
[8] J. Li, S. Ray, B.G. Lindsay, A nonparametric statistical approach to clustering via mode identification, J. Mach. Learn. Res. 8 (2007) 1687–1723.
[9] C.S. Lin, J.S. Chiu, M.H. Hsieh, M.S. Mok, Y.C. Li, H.W. Chiu, Predicting hypotensive episodes during spinal anesthesia with the application of artificial

neural networks, Comput. Methods Programs Biomed. 92 (2008) 193–197.
[10] W. Mendenhall, R.J. Beaver, B.M. Beaver, An Brief Introduction to Probability and Statistics, first ed. Duxbury, CA, 2002.
[11] J. Pan, G. Mackenzie, Model selection for joint mean-covariance structures in longitudinal studies, Biometrika 90 (2003) 239–244.

http://refhub.elsevier.com/S0047-259X(17)30529-8/sb1
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb2
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb3
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb4
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb5
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb5
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb5
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb6
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb7
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb8
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb9
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb9
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb9
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb11


L. Xu, S. Xiang and W. Yao / Journal of Multivariate Analysis 171 (2019) 397–411 411

[12] M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika 86 (1999),
677–690.

[13] M. Pourahmadi, Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika 87 (2000),
425–435.

[14] M. Pourahmadi, Cholesky decompositions and estimation of a covariance matrix: Orthogonality of variance-correlation parameters, Biometrika 94
(2007) 1006–1013.

[15] Y. Qin, C.E. Priebe, Maximum Lq-likelihood estimation via the expectation–maximization algorithm: A robust estimation of mixture models, J. Amer.
Statist. Assoc. 108 (2013) 914–928.

[16] A. Qu, B.G. Lindsay, B. Li, Improving estimating equations using quadratic inference functions, Biometrika 87 (2000) 823–836.
[17] A.A. Samur, N. Coskunfirat, O. Saka, Comparison of predictor approaches for longitudinal binary outcomes application to anesthesiology data, PeerJ 2

(2014) http://dx.doi.org/10.7717/peerj.648.
[18] S.K. Sharma, N.M. Gajraj, J.E. Sidawi, Prevention of hypotension during spinal anesthesia: A comparison of intravascular administration of hetastarch

versus lactated Ringer’s solution, Anesth. Analg. 84 (1997) 111–114.
[19] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998.
[20] W. Yao, A note on EM algorithm for mixture models, Statist. Probab. Lett. 83 (2013) 519–526.
[21] W. Yao, R. Li, New local estimation procedure for nonparametric regression function of longitudinal data, J. R. Stat. Soc. Ser. B Stat. Methodol. 75 (2013)

123–138.
[22] H. Ye, J. Pan, Modelling covariance structures in generalized estimating equations for longitudinal data, Biometrika 93 (2006) 927–941.
[23] J. Yin, Z. Geng, R. Li, H. Wang, Nonparametric covariance model, Statist. Sinica 20 (2010) 469–479.
[24] W. Zhang, C. Leng, A moving average cholesky factor model in covariance modeling for longitudinal data, Biometrika 99 (2012) 141–150.
[25] W. Zhang, C. Leng, C.Y. Tang, A joint modeling approach for longitudinal studies, J. R. Stat. Soc. Ser. B Stat. Methodol. 77 (2015) 219–238.

http://refhub.elsevier.com/S0047-259X(17)30529-8/sb12
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb12
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb12
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb13
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb13
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb13
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb14
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb14
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb14
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb15
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb15
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb15
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb16
http://dx.doi.org/10.7717/peerj.648
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb18
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb18
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb18
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb19
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb20
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb21
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb21
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb21
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb22
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb23
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb24
http://refhub.elsevier.com/S0047-259X(17)30529-8/sb25

	Robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal data
	Introduction
	New estimation procedure
	Computation algorithm
	Joint mean–covariance modeling approaches

	Asymptotics
	Simulation studies
	Models
	Summary of simulation results

	Real data analysis
	Discussion
	Acknowledgments
	Appendix A Monotonicity of MMEM
	Appendix B Consistency and asymptotic normality 
	References


